If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-4=45
We move all terms to the left:
t^2-4-(45)=0
We add all the numbers together, and all the variables
t^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| x^2=x-5=0 | | 436,400+p=472,100 | | 15^7x=68 | | f(-3)=-3^2+3(-3) | | n/8 =11/5 | | 5x2-21=39 | | -5x+11=-5x+10 | | 5c=c-(c-8) | | 9x+7-6x=6x-9+x | | 10x+6x-2=30 | | (-20)-x=104 | | 32x^2-63x+32=0 | | x^2+4x-8=-7 | | -7(2y-3)+7y=7(y+2) | | (4v-7)(9-v)=0 | | 8c+7=5c+16 | | 9(q-12)=3(q-12) | | 4x-5x-12=6x+2 | | 3(u-1)=5u+9-3(-4u-2) | | -2w+48=-8(w-9) | | 9/11x+1/3=3/7-2/11x+3/7 | | X/(-1/2)x=6 | | -x2+x-380=0 | | -5(-4x+3)-6x=4(x-2)-3 | | x2+x-380=0 | | 3x=10−2x | | 6x=2x−8 | | 2a-3=a-4 | | 2(2a+1)=3(a-8) | | 5.6q-2.6-5.9q=1.3q-5.1 | | 3a+8=5a-7 | | 0=3(3x)^2+7 |